Abstract 33 Table 2 Base-case analysis using Markov model

Strategy	Mean total cost	Mean total QALYs	Incremental cost	Incremental QALY	ICER
Ablation	£10,483 (€11,741)	2.801	£5,657 (€6,336)	0.039	£144,150 (€161,448)

34

EFFICACY OF PULMONARY VEIN ISOLATION IN PREVENTING ATRIAL FIBRILLATION: META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS WITH AN INVASIVE CONTROL PROCEDURE

¹Arunashis Sau*, ²James Howard, ²Sayed Al-Aidarous, ²Joao Martins, ²Becker Al-Khayatt, ⁶Phang Boon Lim, ⁷Prapa Kanagaratnam, ⁸Zachary Whinnett, ⁹Nicholas Peters, ²Markus Sikkel, ³Daryl Francis, ¹²S M Afzal Sohaib. ¹NHS; ²Imperial College London; ³NIHR Imperial College London BRC and Imperial College Healthcare NHS Trust

10.1136/heartjnl-2019-BCS.32

Introduction Pulmonary vein isolation (PVI) is a commonly used element in treatment of atrial fibrillation (AF) but has never been tested in an intentionally placebo (sham) controlled trial. Nevertheless there have been several randomized controlled trials (RCTs) in which both arms receive an ablation procedure but the only difference between treatment arms is inclusion or omission of PVI. As long as both doctor and patient have reason to believe that the procedures in both arms are effective, such RCTs could be an effective proxy for placebo controlled trials.

Methods Medline and Cochrane databases were searched for RCTs comparing catheter ablation including PVI with left atrial ablation excluding PVI. The primary efficacy endpoint was freedom from AF/atrial tachycardia at 6 months. A

random-effects meta-analysis was performed using the restricted maximum likelihood (REML) estimator.

Results Overall, seven studies (909 patients) met inclusion criteria. Across the 7 trials, mean age was 57.3, 70.2% of participants were male. In four trials (352 patients) the non-PVI ablation procedure was performed in both arms, while PVI was performed in only one arm. The non-PVI ablation procedures were complex fractionated atrial electrogram ablation (2 studies), ganglionated plexi ablation (1 study) and focal impulse and rotor modulation (1 study). In these, AF recurrence was significantly lower when PVI was included (RR 0.48, 95% CI 0.26-0.90, I2 64.4%)In an analysis of all 7 studies, AF recurrence was significantly lower in ablation with an ablation strategy including PVI compared to one without PVI (Figure 1, RR 0.67, 95% CI 0.53-0.85, p = 0.001, I2 0%). Neither type of AF (persistent vs. paroxysmal, p=0.43) nor type of non-PVI ablation (p=0.35) were significant moderators of the effect size. A sensitivity analysis omitting each study in turn showed similar results to the primary analysis. In particular exclusion of the retracted OASIS trial showed results similar to the primary analysis.

Conclusion PVI significantly reduces AF recurrence against a procedural control. A true placebo controlled trial of PVI versus placebo PVI (and no other procedure) might show an even larger efficacy because there would be no background efficacy in the control arm. It remains unknown how these convincing reductions in electrically documented AF would relate to symptom regression, since the correspondence between arrhythmia and symptoms is imperfect. A placebo (sham) controlled RCT would be the ideal method of testing this

Conflict of Interest None

Abstract 34 Figure 1

54 rigure i		Active		Cont	ntrol	trol					
Study and Year	Therapy	Events	N	Therapy	Events	N	Weight (%)				Relative risk [95% CI]
CFAE studies											
Di Biase, 2009	PVI+CFAE	2	34	CFAE	14	34	2.9	•			2.86% 0.14 [0.04, 0.58]
STAR AF, 2010	PVI+CFAE	6	34	CFAE	19	34	9.1		⊢		9.14% 0.32 [0.14, 0.69]
Chen, 2011	PVI	17	60	CFAE	25	58	22.6		⊢ ■	4	22.60% 0.66 [0.40, 1.08]
Random effects model	for CFAE studies	s (Q = 5.48	3, df = 2, p	for heterogene	ity = 0.06;	$I^2 = 64.0$	%)		-		0.37 [0.17, 0.83]
GP studies											
Katritsis, 2013	PVI+GP	18	81	GP	23	78	19.9		⊢ ■	-	19.86% 0.75 [0.44, 1.28]
Mamchur, 2014	PVI	9	41	GP	9	37	8.6		⊢	—	8.59% 0.90 [0.40, 2.03]
Random effects model	for GP studies (Q = 0.13,	df = 1, p for	heterogeneity	= 0.72; I ²	= 0.0%)			-	-	0.80 [0.51, 1.24]
FIRM studies											
OASIS, 2016	PVI+FIRM	13	34	FIRM	12	23	16.8		⊢ ■	-	16.79% 0.73 [0.41, 1.31]
HFSA studies											
RADAR-AF, 2014	PVI	18	58	HFSA	19	55	20.2		⊢— ■	—	20.16% 0.90 [0.53, 1.52]
Random effects model	for all studies (0	O = 10.17.	df = 6, p fo	or heterogeneit	/ = 0.12; I	2 = 0.0%)			•		100.00% 0.67 [0.53, 0.85]
p for study group mod						,			•		p for overall effect = 0.0011
								0.04	1 1	'	
								0.04	0.2 1	. 5	

Heart 2019;**105**(Suppl 6):A1–A193

PVI better < Relative risk > Control better